On the problem of deciding if a polyomino tiles the plane by translation
نویسندگان
چکیده
منابع مشابه
An algorithm for deciding if a polyomino tiles the plane by translations
For polyominoes coded by their boundary word, we describe a quadratic O(n) algorithm in the boundary length n which improves the naive O(n) algorithm. Techniques used emanate from algorithmics, discrete geometry and combinatorics on words.
متن کاملAn algorithm for deciding if a polyomino tiles the plane
For polyominoes coded by their boundary word, we describe a quadratic O(n) algorithm in the boundary length n which improves the naive O(n) algorithm. Techniques used emanate from algorithmics, discrete geometry and combinatorics on words.
متن کاملA parallelogram tile fills the plane by translation in at most two distinct ways
We consider the tilings by translation of a single polyomino or tile on the square grid Z. It is well-known that there are two regular tilings of the plane, namely, parallelogram and hexagonal tilings. Although there exist tiles admitting an arbitrary number of distinct hexagon tilings, it has been conjectured that no polyomino admits more than two distinct parallogram tilings. In this paper, w...
متن کاملTilings by Translation: Enumeration by a Rational Language Approach
Beauquier and Nivat introduced and gave a characterization of the class of pseudo-square polyominoes that tile the plane by translation: a polyomino tiles the plane by translation if and only if its boundary word W may be factorized as W = XY X Y . In this paper we consider the subclass PSP of pseudo-square polyominoes which are also parallelogram. By using the Beauquier-Nivat characterization ...
متن کاملA Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino
A plane tiling consisting of congruent copies of a shape is isohedral provided that for any pair of copies, there exists a symmetry of the tiling mapping one copy to the other. We give a O(n log2 n)-time algorithm for deciding if a polyomino with n edges can tile the plane isohedrally. This improves on the O(n18)-time algorithm of Keating and Vince and generalizes recent work by Brlek, Provença...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006